Is 2D Scaling Dead? Looking at Transistor Design

 (Part 3 in the series Which Direction For EDA: 2D,3D, or 360?)

Replica of the First TransistorIn the last blog post, I started to examine the question “is 2D scaling really dead or just mostly dead?” I looked at the most challenging issue for 2D scaling, lithography. But even if we can draw the device patterns somehow on the wafer at smaller and smaller geometries, does not necessarily mean that the circuits will deliver the performance (speed, area, power) improvements that Moore’s Law has delivered in the past. Indeed, as transistors get smaller (gate length and width) they also get shorter (oxide thickness). There are limits to the improvements we can gain in power and speed. We’ll talk about those next.

Transistor Design

First, consider what has made 2D scaling effective to date. The move to smaller geometries has allowed us to produce transistors that have shorter channels, operate at lower supply voltages, and switch less current. The shorter channel results in lower gate capacitance and higher drive which means faster devices. And the lower supply voltage and lower current result in lower dynamic power. All good.

At the same time, these shorter channels have higher sub-threshold and source-drain leakage currents and the thinner gate oxide results in greater gate leakage. At the start of Moore’s Law, leakage was small, so exponential increases were not a big deal. But at current and future geometries, leakage power is on par and soon exceeding dynamic power. And we care more today about static power, due to the proliferation of portable devices that spend most of their time in standby mode.


The reduction in dynamic power is also reaching a limit. Most of the dynamic power reduction of the last decade was due to voltage scaling. For instance, scaling from 3.3V to 1.0V reduces power by 10x alone. But reductions beyond 08.V are problematic due to the inherent drop across a transistor and device threshold voltages. Noise margins are fast eroding and that will cause new problems.

Still, as with lithography, we haven’t thrown in the towel yet.

Strained Silicon is a technique that has been in use since the 90nm and 65nm nodes. It involves stretching apart the silicon atoms to allow better electron mobility and hence faster devices at lower power consumpti0on, up to 35% faster.

Hi-k dielectrics (k being the dielectric constant of the gate oxide) can reduce leakage current. The silicon dioxide is replaced with a material such as hafnium dioxide with a larger dielectric constant, thereby reducing leakage for an equivalent capacitance. This technique is often implemented with another modification which is replacing the polysilicon gate with a metal gate with lower resistance, hence increasing speed. Together, the use of hi-k dielectrics with metal gates is often referred to by the acronym HKMG and is common at 45nm and beyond.

A set of techniques commonly referred to as FinFET or Multi-gate FET (MuGFET) break the gate of a single transistor into several gates in a single device. How? Basically by flipping the transistor on it’s side. The net effect is a reduction in effective channel width and device threshold with the same leakage current; i.e. faster devices with lower dynamic power with the same leakage power.  But this technique is not a simple “tweak”; it’s a fundamental change in the way we build devices. To quote Bernard Meyerson of IBM, “to go away from a planar device and deal with a non-planar one introduces unimaginable complexities.” Don’t expect this to be easy or cheap.

Multigate FET - Trigate

A more mainstream technology that has been around a while, Silicon-on-Insulator (SOI), is also an attractive option for very high performance ICs such as those found in game consoles. In SOI ICs, a thick layer of an insulator (usually silicon dioxide) lies below the devices instead of silicon as in normal bulk CMOS. This reduces device capacitance and results in a speed-power improvement of 2x-4x, although with more expensive processing and a slightly more complex design process. You can find a ton of good information at the SOI Consortium website.

In summary, we are running into a brick wall for transistor design. Although there are new design techniques that can get us over the wall, none of these are easy and all of them are expensive, And the new materials used in this process create new kinds of defects, hence reducing yield. With some work, the techniques above may get us to 16nm or maybe a little bit further. Beyond that, they’re talking about Graphene transistors (i.e. carbon nanotubes), pretty far out stuff.

In my next post, I’ll look at some of the other considerations regarding 2D scaling, not the least of which is the extraordinary cost.

harry the ASIC guy

1 Star2 Stars3 Stars4 Stars5 Stars (No Ratings Yet)
Loading ... Loading ...

Tags: , , , , ,

Leave a Reply